An Iterative Method for Solving Relaxed One-Sided Lipschitz Algebraic Inclusions
نویسندگان
چکیده
An existing solvability result for relaxed one-sided Lipschitz algebraic inclusions is improved. This enhanced solvability result allows the design of a robust iterative method for the numerical solution of the algebraic inclusion. Sharp error estimates for this method, illustrative analytic examples and a numerical example are provided.
منابع مشابه
Semilinear Parabolic Differential Inclusions with One-sided Lipschitz Nonlinearities
We present an existence result for a partial differential inclusion with linear parabolic principal part and relaxed one-sided Lipschitz multivalued nonlinearity in the framework of Gelfand triples. Our study uses discretizations of the differential inclusion by a Galerkin scheme, which is compatible with a conforming finite element method, and we analyze convergence properties of the discrete ...
متن کاملImplementing Galerkin Finite Element Methods for Semilinear Elliptic Differential Inclusions
Relaxed one-sided Lipschitz conditions play an important role when analyzing ordinary differential inclusions. They allow to derive a-priori estimates of solutions and convergence estimates for explicit and implicit time discretizations. In this paper we consider Galerkin finite element discretizations of semilinear elliptic inclusions that satisfy a relaxed one-sided Lipschitz condition. It is...
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملAn iterative algorithm for generalized nonlinear variational inclusions with relaxed strongly accretive mappings in Banach spaces
We use Nadler’s theorem and the resolvent operator technique for m-accretive mappings to suggest an iterative algorithm for solving generalized nonlinear variational inclusions with relaxed strongly accretive mappings in Banach spaces. We prove the existence of solutions for our inclusions without compactness assumption and the convergence of the iterative sequences generated by the algorithm i...
متن کاملAn Iterative Method for Solving the Generalized System of Relaxed Cocoercive Quasivariational Inclusions and Fixed Point Problems of an Infinite Family of Strictly Pseudocontractive Mappings
We introduce an iterative scheme by the viscosity approximation to find the set of solutions of the generalized system of relaxed cocoercive quasivariational inclusions and the set of common fixed points of an infinite family of strictly pseudocontractive mappings problems in Hilbert spaces. We suggest and analyze an iterative scheme under some appropriate conditions imposed on the parameters; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 164 شماره
صفحات -
تاریخ انتشار 2015